USN

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Operating System

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART – A

1 a. Define operating system. Explain different views of operating system.

(08 Marks)

- b. What are virtual machines? Explain VM-WARE architectures with neat diagram. (08 Marks)
- c. Explain process management activities.

(04 Marks)

2 a. With neat diagram explain different states of a process.

(05 Marks)

b. Discuss scheduling criteria used in operating system.

(05 Marks)

c. For the following example calculate average waiting time and average turnaround time using FCFS, pre-emptive SJF, and RR[1 time unit] CPU scheduling algorithms.

Jobs	rrival–Ti	ime E	Burst-time			
P1	0	4	8			
P2	1	1 4	4			
P3	2	7.47	9			
P4	3		5			

(10 Marks)

3 a. What is critical section problem? Explain semaphore solution to critical section problem.

(07 Marks) (08 Marks)

- b. Describe the monitor solution to the classical dining philosopher problem.
- c. Define race condition. Explain readers writer problem with semaphore in detail. (05 Marks)
- 4 a. What is deadlock? What are necessary conditions on operating system must satisfy for a deadlock to occur? (06 Marks)
 - b. For the following snapshot find the safe sequence using Banker's algorithm.

Process	Allocation			Max			Available		
	Α	В	C	A	В	C	Α	В	C
P ₀	0	0	2	0	0	4	1	0	2
P_1	1	0	0	2	0	1			
P_2	1	3	5	1	3	7			
P_3	6	3	2	8	4	2			
P ₄	1	4	3	1	5	7			

- i) Is the system in safe state?
- ii) If a request from process P_2 arrives for (0, 0, 2) can the request be granted?

(09 Marks)

c. How is system recovered from deadlock?

(05 Marks)

PART - B

- 5 a. What are translation look aside buffer (TLB)? Explain in detail with a simple paging system with a neat diagram.

 (08 Marks)
 - b. Given the memory partitions of 100k, 500k, 200k, 300k and 600k. Apply first fit and best fit algorithm to place 212k, 417k, 112k, 426k processes respectively. (04 Marks)
 - c. Consider the following page replacement string 10710212303240362107 for a memory with 3 frames. How many page faults occur for LRU and FIFO page replacement algorithms? Which is the efficient among both? (08 Marks)
- 6 a. Explain how free space is managed.

(04 Marks)

b. Explain the different file access methods.

(06 Marks)

c. What is a file? Explain different allocation methods.

(10 Marks)

7 a. Describe the access matrix model used for protection purpose.

(08 Marks)

- b. Suppose the position of cylinder is at 53. The disk drive has cylinders numbered from 0 to 199. The queue of parading request in FIFO order is: 98, 183, 37, 122, 14 124, 65, 67. Starting from the current head position what is the total distance travelled (in cylinders) by the disk arm to satisfy the requests using algorithm: i) FCFS ii) SSTF iii) SCDN and iv) Look. Illustrate with figures in lack case.
- 8 a. Explain the different system components of Linux OS.

(10 Marks)

b. Discuss the interprocess communication facility in UNIX operating system.

(10 Marks)

7, 80